La BODYS : ajouts dans l’onglet « Démontrer / Justifier » (en Maths)

2 ajouts dans cette partie importante de la démonstration en maths .

  1. Attention : Toutes les cartes et méthodes utilisées sont disponibles en entier dans les articles sur la droite des milieux (ici) et sur le théorème de Pythagore (ici et et encore ) , alors que dans les images ci-dessous elles n ‘apparaissent pas en entier
  2. Ci-dessous ce sont des « images » (donc souvent incomplètes pour pouvoir les mettre avec la capture d’écran) de la BODYS ESSAI

1- La droite des milieux : 3 démonstrations

page 1 : la droite des milieux et à quoi ça sert : 2 cartes mentales

 

pages 2 à 4 : démonstrations avec la droite des milieux et ses propriétés dans un triangle quelconque (avec méthode identique en 3 points : Je sais que / Or / Donc)

page 2 : démontrer qu’un point est le milieu d’un segment

page 3 : calculer la longueur d’un segment

page 4 : démontrer que 2 droites sont parallèles

2- Le théorème de Pythagore : 2 démonstrations, 1 vérification

page 1 : Le théorème de Pythagore en carte mentale

page 2 : Calculer la mesure d’un côté d’un triangle rectangle et fiche d’aide

page 3 : Vérifier les mesures des côtés d’un triangle rectangle

page 4 : Démontrer qu’un triangle est rectangle ou non (avec Pythagore et avec les angles)

Une BODYS toujours à l’essai ….. J’essaie de mettre au fur et à mesure des méthodes, fiches d’aide, des procédures qui nous sont utiles cette année en vue aussi de l’année prochaine . Même si Léo ne s’en sert pas en classe , on l’a au moins sous la main à la maison et lors des révisions …. Nous poursuivrons l’onglet « démontrer / justifier » au fur et à mesure des notions étudiées en classe .

Publicités

Pythagore : une autre piste d’automatisation dans le calcul de la mesure d’un côté

Après les articles précédents sur Pythagore (ici et ) , voici une autre aide donnée en classe qui peut permettre la « flexibilité », la mémorisation ….. :

Dans le triangle ABC rectangle en B  , on a :

  

DONC pour calculer la mesure des côtés de ce triangle , on peut directement appliquer les « formules » . Néanmoins, pour Léo , il m’a semblé encore nécessaire d’avoir tout par écrit, d’entourer (ou surligner) ce que l’on cherche et d’utiliser le « geste » qui cache (ou enlève) un des termes …. [quand ce n’est pas la mesure de l’hypoténuse qui est cherchée, cas le plus simple)]. Le « carré » aussi qui parfois disparaît …… Il faut être en mesure d’expliquer ce que l’on fait pour pouvoir mémoriser une démarche et l’automatiser ….

Une autre piste : peut-être, pourrait-on passer par une étape intermédiaire de type  :

Document à télécharger sous Word  Utiliser Pythagore METHODE 

à ajouter dans nos fiches d’aide aux démonstrations en lien avec Pythagore ( voir les 2 1ères ici ) et dans la BODYS ( à venir dans un prochain article) …… On devrait en avoir besoin encore en 3ème au moins ….

Plus de clarté en image dans un exercice « guidé » mais où je demande à Léo d' »expliciter » sa démarche, de bien visualiser et faire des liens avec le »dessin , codage » du triangle rectangle , pour automatiser MAIS en réfléchissant ….. oralement au moins même si c’est plus long ….. Le travail ici est de « vérifier » les mesures des 3 côtés grâce à l’égalité de Pythagore :

Exercice fait  en image :

exercice d’entraînement à télécharger sous Word Vérifier les mesures de chaque côté EXO

Parallèlement, nous allons reprendre un exercice de chacune des démonstrations en utilisant le théorème de Pythagore  :

  • calcul d’une mesure d’un côté d’un triangle en connaissant les 2 autres
  • reconnaître si un triangle est rectangle

Il ne reste plus qu’à s’y mettre …… difficile pendant les vacances de Noël …..

 

Pythagore : un essai de démonstration de base

En travaillant à nouveau avec le théorème de Pythagore ( article précédent ici ), nous avons essayé de procéder de manière « simple et rigoureuse » .

Trouver la longueur d’un côté

J’ai préparé une « fiche guide » (procédure, aide …. comme on voudra) pour installer une démarche en 3 étapes (la dernière étant la phrase réponse) . En image :

à télécharger sous Word PYTHAGORE PROCEDURES2

Démontrer qu’un triangle est rectangle (ou non )

2ème fiche , en image

( le carré jaune est pour indiquer le signe , s’il y a égalité ou non)

ça coince encore ????

Là où ça coince (et ce n’est sûrement pas spécifique aux enfants DYS ! ) :

  1. Passer de BC² à BC  : revenir au carré avec la surface connue , quand on doit trouver la longueur du côté pour arriver à : BC =√BC² ( si je sais que BC² = 33 alors BC = √33  . On peut aussi reprendre que le carré de √33 c’est 33 ….. à entraîner ….. mais le mélange est vite là !!!! on peut reprendre les fiches ici)
  2. Quand la longueur cherchée se trouve du côté de la somme des 2 termes au carré : une difficulté à « gérer » ( à chacun de trouver « sa » méthode ex : trouver BC quand on sait que AB² = AC² + BC² et que l’on connaît AB et AC : addition à trou ou soustraction ?…..)

Il nous faudra encore un peu de temps pour « automatiser » tout cela ……. et/ou trouver sa « propre » voie

Premiers pas avec Pythagore

Pythagore ou Paul Pogba ? à vous de choisir ……

Nous abordons ce fameux théorème qui va sans doute nous poursuivre au moins jusqu’en 3ème donc il faut bien commencer par l’apprivoiser ….. Pour cela , 2 notions sont à bien « recentrer » : le triangle rectangle et d’autre part la relation entre un nombre et son carré (pour pouvoir ensuite trouver la longueur d’un côté en « prenant » la racine ….)

une vue d’ensemble …..

avec cette carte où l’on a essayé de revoir le « sujet » dans son ensemble pour ensuite venir « zoomer » les différents points :

  • explications : qui était Pythagore ? Ce qu’il a démontré ? Une image pour nous aider : le fameux « dab » de Paul Pogba ( trouvé sur internet, explication de ce choix par un professeur de Mathématiques à lire ici)
  • ce théorème s’applique toujours dans un triangle rectangle

zoom sur le triangle rectangle

  • comment le reconnaître « visuellement » ? : avec son angle droit
  • savoir repérer l’hypothénuse : c’est très important ! Je n’ai pas choisi d’ajouter une « image mentale » pour l’hypothénuse  car simplement l’observation a suffi (même si dans un premier temps elle se distingue en vert sur la carte) : Léo se sert de sa taille pour la repérer (c ‘est le plus grand côté) ou bien de sa place par rapport à l’angle droit . On a fait quelques exercices où on donnait la « lettre » de l’angle droit , ou bien l’expression de Pythagore et il fallait placer les lettres …. Bref, on a manipulé un peu …..
  • On a revu aussi la propriété des angles dans un triangle : leur somme vaut 180° ce qui a permis de voir si un triangle était rectangle ou non quand on connaît la mesure de 2 de ses angles ….
  • attention au vocabulaire à bien faire préciser : l’hypothénuse, un angle droit (et non pas rectangle ) , les côtés de l’angle droit
  • si nécessaire : reprendre la construction du triangle rectangle

Zoom sur le nombre , son carré et la racine carrée d’un autre

quelques points à reprendre et à « manipuler » dans sa tête pour obtenir la flexibilité nécessaire à son utilisation :

  • en partant du plus simple : 9² c’est 9X9 = 81 , DONC √81 c’est 9
  • en utilisant « la géométrie » : l’aire d’un carré (c X c ) est de 81cm² , son côté (c) c’est √81, donc c’est 9 cm
  • aide avec « image »
  • enfin toujours en géométrie , pour trouver la mesure d’un segment quand on connaît le carré de sa mesure : AB² = 81 donc AB = √81 = 9
  • Pour s’entraîner ( à plastifier) : on peut mettre soit des nombres , soit des lettres, soit des segments ….

zoom sur le théorème

  • savoir l’écrire en « phrase » : on attendra la « version exacte » qui sera donnée en classe
  • savoir l’écrire en « expression littérale » après avoir reconnu l’hypothénuse :

AB² = AC² + CB² (et inversement , pour arriver ensuite à manipuler à l’intérieur de l’égalité ….. on verra plus tard ….)

  • savoir à quoi sert ce théorème
  • un essai de fiche « procédure » pour soutenir la réflexion et l’ordre des « étapes » :

des outils à tester donc ……

à télécharger sous Word  Le théorème de Pythagore nombre et son carré entr Procédure pour appliquer un théorème ex Pythagore 2